moveit2
The MoveIt Motion Planning Framework for ROS 2.
multivariate_gaussian.h
Go to the documentation of this file.
1 /*********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2009, Willow Garage, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  * copyright notice, this list of conditions and the following
15  * disclaimer in the documentation and/or other materials provided
16  * with the distribution.
17  * * Neither the name of Willow Garage nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *********************************************************************/
34 
35 /* Author: Mrinal Kalakrishnan */
36 
37 #pragma once
38 
39 #include <random>
40 #include <cstdlib>
41 #include <eigen3/Eigen/Cholesky>
42 #include <eigen3/Eigen/Core>
43 
44 namespace chomp
45 {
50 {
51 public:
52  template <typename Derived1, typename Derived2>
53  MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance);
54 
55  template <typename Derived>
56  void sample(Eigen::MatrixBase<Derived>& output);
57 
58 private:
59  Eigen::VectorXd mean_;
60  Eigen::MatrixXd covariance_;
61  Eigen::MatrixXd covariance_cholesky_;
63  int size_;
64  std::mt19937 rng_;
65  std::normal_distribution<double> gaussian_;
66 };
67 
69 
70 template <typename Derived1, typename Derived2>
71 MultivariateGaussian::MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean,
72  const Eigen::MatrixBase<Derived2>& covariance)
73  : mean_(mean), covariance_(covariance), covariance_cholesky_(covariance_.llt().matrixL()), gaussian_(0.0, 1.0)
74 {
75  rng_ = std::mt19937(std::random_device{}());
76  size_ = mean.rows();
77 }
78 
79 template <typename Derived>
80 void MultivariateGaussian::sample(Eigen::MatrixBase<Derived>& output)
81 {
82  for (int i = 0; i < size_; ++i)
83  output(i) = gaussian_(rng_);
84  output = mean_ + covariance_cholesky_ * output;
85 }
86 } // namespace chomp
Generates samples from a multivariate gaussian distribution.
void sample(Eigen::MatrixBase< Derived > &output)
MultivariateGaussian(const Eigen::MatrixBase< Derived1 > &mean, const Eigen::MatrixBase< Derived2 > &covariance)