moveit2
The MoveIt Motion Planning Framework for ROS 2.
Loading...
Searching...
No Matches
floating_joint_model.cpp
Go to the documentation of this file.
1/*********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2013, Ioan A. Sucan
5 * Copyright (c) 2008-2013, Willow Garage, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 * * Neither the name of the Willow Garage nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 *********************************************************************/
35
36/* Author: Ioan Sucan */
37
38#include <cmath>
39#include <Eigen/Geometry>
40#include <geometric_shapes/check_isometry.h>
41#include <limits>
43#include <rclcpp/logger.hpp>
44#include <rclcpp/logging.hpp>
46
47namespace moveit
48{
49namespace core
50{
51namespace
52{
53constexpr size_t STATE_SPACE_DIMENSION = 7;
54
55rclcpp::Logger getLogger()
56{
57 return moveit::getLogger("moveit.core.floating_joint_model");
58}
59
60} // namespace
61
62FloatingJointModel::FloatingJointModel(const std::string& name, size_t joint_index, size_t first_variable_index)
63 : JointModel(name, joint_index, first_variable_index), angular_distance_weight_(1.0)
64{
66 local_variable_names_.push_back("trans_x");
67 local_variable_names_.push_back("trans_y");
68 local_variable_names_.push_back("trans_z");
69 local_variable_names_.push_back("rot_x");
70 local_variable_names_.push_back("rot_y");
71 local_variable_names_.push_back("rot_z");
72 local_variable_names_.push_back("rot_w");
73 for (size_t i = 0; i < STATE_SPACE_DIMENSION; ++i)
74 {
75 variable_names_.push_back(getName() + "/" + local_variable_names_[i]);
77 }
78
79 variable_bounds_.resize(7);
80
81 variable_bounds_[0].position_bounded_ = true;
82 variable_bounds_[1].position_bounded_ = true;
83 variable_bounds_[2].position_bounded_ = true;
84 variable_bounds_[3].position_bounded_ = true;
85 variable_bounds_[4].position_bounded_ = true;
86 variable_bounds_[5].position_bounded_ = true;
87 variable_bounds_[6].position_bounded_ = true;
88
89 variable_bounds_[0].min_position_ = -std::numeric_limits<double>::infinity();
90 variable_bounds_[0].max_position_ = std::numeric_limits<double>::infinity();
91 variable_bounds_[1].min_position_ = -std::numeric_limits<double>::infinity();
92 variable_bounds_[1].max_position_ = std::numeric_limits<double>::infinity();
93 variable_bounds_[2].min_position_ = -std::numeric_limits<double>::infinity();
94 variable_bounds_[2].max_position_ = std::numeric_limits<double>::infinity();
95 variable_bounds_[3].min_position_ = -1.0;
96 variable_bounds_[3].max_position_ = 1.0;
97 variable_bounds_[4].min_position_ = -1.0;
98 variable_bounds_[4].max_position_ = 1.0;
99 variable_bounds_[5].min_position_ = -1.0;
100 variable_bounds_[5].max_position_ = 1.0;
101 variable_bounds_[6].min_position_ = -1.0;
102 variable_bounds_[6].max_position_ = 1.0;
103
105}
106
107double FloatingJointModel::getMaximumExtent(const Bounds& other_bounds) const
108{
109 double dx = other_bounds[0].max_position_ - other_bounds[0].min_position_;
110 double dy = other_bounds[1].max_position_ - other_bounds[1].min_position_;
111 double dz = other_bounds[2].max_position_ - other_bounds[2].min_position_;
112 return sqrt(dx * dx + dy * dy + dz * dz) + M_PI * 0.5 * angular_distance_weight_;
113}
114
115double FloatingJointModel::distance(const double* values1, const double* values2) const
116{
117 return distanceTranslation(values1, values2) + angular_distance_weight_ * distanceRotation(values1, values2);
118}
119
120double FloatingJointModel::distanceTranslation(const double* values1, const double* values2) const
121{
122 double dx = values1[0] - values2[0];
123 double dy = values1[1] - values2[1];
124 double dz = values1[2] - values2[2];
125 return sqrt(dx * dx + dy * dy + dz * dz);
126}
127
128double FloatingJointModel::distanceRotation(const double* values1, const double* values2) const
129{
130 // The values are in "xyzw" order but Eigen expects "wxyz".
131 const auto q1 = Eigen::Quaterniond(values1[6], values1[3], values1[4], values1[5]).normalized();
132 const auto q2 = Eigen::Quaterniond(values2[6], values2[3], values2[4], values2[5]).normalized();
133 return q2.angularDistance(q1);
134}
135
136void FloatingJointModel::interpolate(const double* from, const double* to, const double t, double* state) const
137{
138 // interpolate position
139 state[0] = from[0] + (to[0] - from[0]) * t;
140 state[1] = from[1] + (to[1] - from[1]) * t;
141 state[2] = from[2] + (to[2] - from[2]) * t;
142
143 // Check if the quaternions are significantly different
144 if (abs(from[3] - to[3]) + abs(from[4] - to[4]) + abs(from[5] - to[5]) + abs(from[6] - to[6]) >
145 std::numeric_limits<double>::epsilon())
146 {
147 // Note the ordering: Eigen takes w first!
148 Eigen::Quaterniond q1(from[6], from[3], from[4], from[5]);
149 Eigen::Quaterniond q2(to[6], to[3], to[4], to[5]);
150
151 Eigen::Quaterniond q = q1.slerp(t, q2);
152
153 state[3] = q.x();
154 state[4] = q.y();
155 state[5] = q.z();
156 state[6] = q.w();
157 }
158 else
159 {
160 state[3] = from[3];
161 state[4] = from[4];
162 state[5] = from[5];
163 state[6] = from[6];
164 }
165}
166
167bool FloatingJointModel::satisfiesPositionBounds(const double* values, const Bounds& bounds, double margin) const
168{
169 if (values[0] < bounds[0].min_position_ - margin || values[0] > bounds[0].max_position_ + margin)
170 return false;
171 if (values[1] < bounds[1].min_position_ - margin || values[1] > bounds[1].max_position_ + margin)
172 return false;
173 if (values[2] < bounds[2].min_position_ - margin || values[2] > bounds[2].max_position_ + margin)
174 return false;
175 double norm_sqr = values[3] * values[3] + values[4] * values[4] + values[5] * values[5] + values[6] * values[6];
176 return fabs(norm_sqr - 1.0) <= std::numeric_limits<double>::epsilon() * 10.0;
177}
178
180{
181 // normalize the quaternion if we need to
182 double norm_sqr = values[3] * values[3] + values[4] * values[4] + values[5] * values[5] + values[6] * values[6];
183 if (fabs(norm_sqr - 1.0) > std::numeric_limits<double>::epsilon() * 100.0)
184 {
185 double norm = sqrt(norm_sqr);
186 if (norm < std::numeric_limits<double>::epsilon() * 100.0)
187 {
188 RCLCPP_WARN(getLogger(), "Quaternion is zero in RobotState representation. Setting to identity");
189 values[3] = 0.0;
190 values[4] = 0.0;
191 values[5] = 0.0;
192 values[6] = 1.0;
193 }
194 else
195 {
196 values[3] /= norm;
197 values[4] /= norm;
198 values[5] /= norm;
199 values[6] /= norm;
200 }
201 return true;
202 }
203 else
204 return false;
205}
206
208{
209 return STATE_SPACE_DIMENSION;
210}
211
212bool FloatingJointModel::enforcePositionBounds(double* values, const Bounds& bounds) const
213{
214 bool result = normalizeRotation(values);
215 for (unsigned int i = 0; i < 3; ++i)
216 {
217 if (values[i] < bounds[i].min_position_)
218 {
219 values[i] = bounds[i].min_position_;
220 result = true;
221 }
222 else if (values[i] > bounds[i].max_position_)
223 {
224 values[i] = bounds[i].max_position_;
225 result = true;
226 }
227 }
228 return result;
229}
230
231void FloatingJointModel::computeTransform(const double* joint_values, Eigen::Isometry3d& transf) const
232{
233 transf = Eigen::Isometry3d(
234 Eigen::Translation3d(joint_values[0], joint_values[1], joint_values[2]) *
235 Eigen::Quaterniond(joint_values[6], joint_values[3], joint_values[4], joint_values[5]).normalized());
236}
237
238void FloatingJointModel::computeVariablePositions(const Eigen::Isometry3d& transf, double* joint_values) const
239{
240 joint_values[0] = transf.translation().x();
241 joint_values[1] = transf.translation().y();
242 joint_values[2] = transf.translation().z();
243 ASSERT_ISOMETRY(transf) // unsanitized input, could contain non-isometry
244 Eigen::Quaterniond q(transf.linear());
245 joint_values[3] = q.x();
246 joint_values[4] = q.y();
247 joint_values[5] = q.z();
248 joint_values[6] = q.w();
249}
250
251void FloatingJointModel::getVariableDefaultPositions(double* values, const Bounds& bounds) const
252{
253 for (unsigned int i = 0; i < 3; ++i)
254 {
255 // if zero is a valid value
256 if (bounds[i].min_position_ <= 0.0 && bounds[i].max_position_ >= 0.0)
257 {
258 values[i] = 0.0;
259 }
260 else
261 {
262 values[i] = (bounds[i].min_position_ + bounds[i].max_position_) / 2.0;
263 }
264 }
265
266 values[3] = 0.0;
267 values[4] = 0.0;
268 values[5] = 0.0;
269 values[6] = 1.0;
270}
271
272void FloatingJointModel::getVariableRandomPositions(random_numbers::RandomNumberGenerator& rng, double* values,
273 const Bounds& bounds) const
274{
275 if (bounds[0].max_position_ >= std::numeric_limits<double>::infinity() ||
276 bounds[0].min_position_ <= -std::numeric_limits<double>::infinity())
277 {
278 values[0] = 0.0;
279 }
280 else
281 {
282 values[0] = rng.uniformReal(bounds[0].min_position_, bounds[0].max_position_);
283 }
284 if (bounds[1].max_position_ >= std::numeric_limits<double>::infinity() ||
285 bounds[1].min_position_ <= -std::numeric_limits<double>::infinity())
286 {
287 values[1] = 0.0;
288 }
289 else
290 {
291 values[1] = rng.uniformReal(bounds[1].min_position_, bounds[1].max_position_);
292 }
293 if (bounds[2].max_position_ >= std::numeric_limits<double>::infinity() ||
294 bounds[2].min_position_ <= -std::numeric_limits<double>::infinity())
295 {
296 values[2] = 0.0;
297 }
298 else
299 {
300 values[2] = rng.uniformReal(bounds[2].min_position_, bounds[2].max_position_);
301 }
302
303 double q[4];
304 rng.quaternion(q);
305 values[3] = q[0];
306 values[4] = q[1];
307 values[5] = q[2];
308 values[6] = q[3];
309}
310
311void FloatingJointModel::getVariableRandomPositionsNearBy(random_numbers::RandomNumberGenerator& rng, double* values,
312 const Bounds& bounds, const double* near,
313 const double distance) const
314{
315 if (bounds[0].max_position_ >= std::numeric_limits<double>::infinity() ||
316 bounds[0].min_position_ <= -std::numeric_limits<double>::infinity())
317 {
318 values[0] = 0.0;
319 }
320 else
321 {
322 values[0] = rng.uniformReal(std::max(bounds[0].min_position_, near[0] - distance),
323 std::min(bounds[0].max_position_, near[0] + distance));
324 }
325 if (bounds[1].max_position_ >= std::numeric_limits<double>::infinity() ||
326 bounds[1].min_position_ <= -std::numeric_limits<double>::infinity())
327 {
328 values[1] = 0.0;
329 }
330 else
331 {
332 values[1] = rng.uniformReal(std::max(bounds[1].min_position_, near[1] - distance),
333 std::min(bounds[1].max_position_, near[1] + distance));
334 }
335 if (bounds[2].max_position_ >= std::numeric_limits<double>::infinity() ||
336 bounds[2].min_position_ <= -std::numeric_limits<double>::infinity())
337 {
338 values[2] = 0.0;
339 }
340 else
341 {
342 values[2] = rng.uniformReal(std::max(bounds[2].min_position_, near[2] - distance),
343 std::min(bounds[2].max_position_, near[2] + distance));
344 }
345
346 double da = angular_distance_weight_ * distance;
347 if (da >= .25 * M_PI)
348 {
349 double q[4];
350 rng.quaternion(q);
351 values[3] = q[0];
352 values[4] = q[1];
353 values[5] = q[2];
354 values[6] = q[3];
355 }
356 else
357 {
358 // taken from OMPL
359 // sample angle & axis
360 double ax = rng.gaussian01();
361 double ay = rng.gaussian01();
362 double az = rng.gaussian01();
363 double angle = 2.0 * pow(rng.uniform01(), 1.0 / 3.0) * da;
364 // convert to quaternion
365 double q[4];
366 double norm = sqrt(ax * ax + ay * ay + az * az);
367 if (norm < 1e-6)
368 {
369 q[0] = q[1] = q[2] = 0.0;
370 q[3] = 1.0;
371 }
372 else
373 {
374 double s = sin(angle / 2.0);
375 q[0] = s * ax / norm;
376 q[1] = s * ay / norm;
377 q[2] = s * az / norm;
378 q[3] = cos(angle / 2.0);
379 }
380 // multiply quaternions: near * q
381 values[3] = near[6] * q[0] + near[3] * q[3] + near[4] * q[2] - near[5] * q[1];
382 values[4] = near[6] * q[1] + near[4] * q[3] + near[5] * q[0] - near[3] * q[2];
383 values[5] = near[6] * q[2] + near[5] * q[3] + near[3] * q[1] - near[4] * q[0];
384 values[6] = near[6] * q[3] - near[3] * q[0] - near[4] * q[1] - near[5] * q[2];
385 }
386}
387
388} // end of namespace core
389} // end of namespace moveit
double distanceRotation(const double *values1, const double *values2) const
Get the distance between the rotation components of two states.
void computeVariablePositions(const Eigen::Isometry3d &transf, double *joint_values) const override
Given the transform generated by joint, compute the corresponding joint values. Make sure the passed ...
void interpolate(const double *from, const double *to, const double t, double *state) const override
Computes the state that lies at time t in [0, 1] on the segment that connects from state to to state....
bool normalizeRotation(double *values) const
double distance(const double *values1, const double *values2) const override
Compute the distance between two joint states of the same model (represented by the variable values)
void getVariableDefaultPositions(double *values, const Bounds &other_bounds) const override
Provide a default value for the joint given the joint variable bounds. Most joints will use the defau...
void getVariableRandomPositions(random_numbers::RandomNumberGenerator &rng, double *values, const Bounds &other_bounds) const override
Provide random values for the joint variables (within specified bounds). Enough memory is assumed to ...
bool enforcePositionBounds(double *values, const Bounds &other_bounds) const override
Force the specified values to be inside bounds and normalized. Quaternions are normalized,...
bool satisfiesPositionBounds(const double *values, const Bounds &other_bounds, double margin) const override
Check if the set of position values for the variables of this joint are within bounds,...
void getVariableRandomPositionsNearBy(random_numbers::RandomNumberGenerator &rng, double *values, const Bounds &other_bounds, const double *near, const double distance) const override
Provide random values for the joint variables (within specified bounds). Enough memory is assumed to ...
double distanceTranslation(const double *values1, const double *values2) const
Get the distance between the translation components of two states.
FloatingJointModel(const std::string &name, size_t joint_index, size_t first_variable_index)
void computeTransform(const double *joint_values, Eigen::Isometry3d &transf) const override
Given the joint values for a joint, compute the corresponding transform. The computed transform is gu...
unsigned int getStateSpaceDimension() const override
Get the dimension of the state space that corresponds to this joint.
A joint from the robot. Models the transform that this joint applies in the kinematic chain....
VariableIndexMap variable_index_map_
Map from variable names to the corresponding index in variable_names_ (indexing makes sense within th...
JointType type_
The type of joint.
Bounds variable_bounds_
The bounds for each variable (low, high) in the same order as variable_names_.
std::vector< VariableBounds > Bounds
The datatype for the joint bounds.
const std::string & getName() const
Get the name of the joint.
std::vector< std::string > local_variable_names_
The local names to use for the variables that make up this joint.
double getMaximumExtent() const
std::vector< std::string > variable_names_
The full names to use for the variables that make up this joint.
Main namespace for MoveIt.
rclcpp::Logger getLogger(const std::string &name)
Creates a namespaced logger.
Definition logger.cpp:79