moveit2
The MoveIt Motion Planning Framework for ROS 2.
prbt_manipulator_ikfast_moveit_plugin.cpp
Go to the documentation of this file.
1 /*********************************************************************
2  *
3  * Software License Agreement (BSD License)
4  *
5  * Copyright (c) 2013, Dave Coleman, CU Boulder; Jeremy Zoss, SwRI; David Butterworth, KAIST; Mathias Lüdtke, Fraunhofer
6  *IPA
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in the
17  * documentation and/or other materials provided with the distribution.
18  * * Neither the name of the all of the author's companies nor the names of its
19  * contributors may be used to endorse or promote products derived from
20  * this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *********************************************************************/
35 
36 /*
37  * IKFast Kinematics Solver Plugin for MoveIt wrapping an ikfast solver from OpenRAVE.
38  *
39  * AUTO-GENERATED by create_ikfast_moveit_plugin.py in moveit_kinematics package.
40  *
41  * This file, including the ikfast cpp from OpenRAVE below, forms a MoveIt kinematics plugin.
42  */
43 
44 
45 #include <Eigen/Geometry>
46 #include <tf2_eigen_kdl/tf2_eigen_kdl.hpp>
47 #include <rclcpp/logger.hpp>
48 #include <rclcpp/logging.hpp>
49 #include <rclcpp/node.hpp>
50 #include <rclcpp/parameter_value.hpp>
51 #include <tf2_eigen/tf2_eigen.hpp>
52 #include <tf2_kdl/tf2_kdl.hpp>
55 
56 
57 using namespace moveit::core;
58 
59 // Need a floating point tolerance when checking joint limits, in case the joint starts at limit
60 const double LIMIT_TOLERANCE = .0000001;
63 {
66 };
67 
69 {
70 #define IKFAST_NO_MAIN // Don't include main() from IKFast
71 
78 {
79  IKP_None = 0,
80  IKP_Transform6D = 0x67000001,
81  IKP_Rotation3D = 0x34000002,
82  IKP_Translation3D = 0x33000003,
83  IKP_Direction3D = 0x23000004,
84  IKP_Ray4D = 0x46000005,
85  IKP_Lookat3D = 0x23000006,
89  IKP_TranslationXY2D = 0x22000008,
94 
104 
117 
119 
121  0x00008000,
138 
139  IKP_UniqueIdMask = 0x0000ffff,
140  IKP_CustomDataBit = 0x00010000,
142 };
143 
144 // struct for storing and sorting solutions
146 {
147  std::vector<double> value;
149 
150  bool operator<(const LimitObeyingSol& a) const
151  {
152  return dist_from_seed < a.dist_from_seed;
153  }
154 };
155 
156 static const rclcpp::Logger LOGGER = rclcpp::get_logger("ikfast");
157 
158 // Code generated by IKFast56/61
160 
161 
163 {
164  std::vector<std::string> joint_names_;
165  std::vector<double> joint_min_vector_;
166  std::vector<double> joint_max_vector_;
167  std::vector<bool> joint_has_limits_vector_;
168  std::vector<std::string> link_names_;
169  const size_t num_joints_;
170  std::vector<int> free_params_;
171 
172  // The ikfast and base frame are the start and end of the kinematic chain for which the
173  // IKFast analytic solution was generated.
174  const std::string IKFAST_TIP_FRAME_ = "flange";
175  const std::string IKFAST_BASE_FRAME_ = "base_link";
176 
177  // prefix added to tip- and baseframe to allow different namespaces or multi-robot setups
178  std::string link_prefix_;
179 
180  // The transform tip and base bool are set to true if this solver is used with a kinematic
181  // chain that extends beyond the ikfast tip and base frame. The solution will be valid so
182  // long as there are no active, passive, or mimic joints between either the ikfast_tip_frame
183  // and the tip_frame of the group or the ikfast_base_frame and the base_frame for the group.
184  bool tip_transform_required_;
185  bool base_transform_required_;
186 
187  // We store the transform from the ikfast_base_frame to the group base_frame as well as the
188  // ikfast_tip_frame to the group tip_frame to transform input poses into the solver frame.
189  Eigen::Isometry3d chain_base_to_group_base_;
190  Eigen::Isometry3d group_tip_to_chain_tip_;
191 
192  bool initialized_; // Internal variable that indicates whether solvers are configured and ready
193 
194  const std::vector<std::string>& getJointNames() const override
195  {
196  return joint_names_;
197  }
198  const std::vector<std::string>& getLinkNames() const override
199  {
200  return link_names_;
201  }
202 
203 public:
207  IKFastKinematicsPlugin() : num_joints_(GetNumJoints()), initialized_(false)
208  {
209  srand(time(nullptr));
210  supported_methods_.push_back(kinematics::DiscretizationMethods::NO_DISCRETIZATION);
211  supported_methods_.push_back(kinematics::DiscretizationMethods::ALL_DISCRETIZED);
212  supported_methods_.push_back(kinematics::DiscretizationMethods::ALL_RANDOM_SAMPLED);
213  }
214 
224  // Returns the IK solution that is within joint limits closest to ik_seed_state
225  bool getPositionIK(
226  const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state, std::vector<double>& solution,
227  moveit_msgs::msg::MoveItErrorCodes& error_code,
229 
245  bool getPositionIK(const std::vector<geometry_msgs::msg::Pose>& ik_poses, const std::vector<double>& ik_seed_state,
246  std::vector<std::vector<double>>& solutions, kinematics::KinematicsResult& result,
247  const kinematics::KinematicsQueryOptions& options) const override;
248 
257  bool searchPositionIK(
258  const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state, double timeout,
259  std::vector<double>& solution, moveit_msgs::msg::MoveItErrorCodes& error_code,
261 
271  bool searchPositionIK(
272  const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state, double timeout,
273  const std::vector<double>& consistency_limits, std::vector<double>& solution,
274  moveit_msgs::msg::MoveItErrorCodes& error_code,
276 
285  bool searchPositionIK(
286  const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state, double timeout,
287  std::vector<double>& solution, const IKCallbackFn& solution_callback, moveit_msgs::msg::MoveItErrorCodes& error_code,
289 
300  bool searchPositionIK(
301  const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state, double timeout,
302  const std::vector<double>& consistency_limits, std::vector<double>& solution,
303  const IKCallbackFn& solution_callback, moveit_msgs::msg::MoveItErrorCodes& error_code,
305 
314  bool getPositionFK(const std::vector<std::string>& link_names, const std::vector<double>& joint_angles,
315  std::vector<geometry_msgs::msg::Pose>& poses) const override;
316 
326  void setSearchDiscretization(const std::map<unsigned int, double>& discretization);
327 
331  bool setRedundantJoints(const std::vector<unsigned int>& redundant_joint_indices) override;
332 
333 private:
334  bool initialize(const rclcpp::Node::SharedPtr& node, const moveit::core::RobotModel& robot_model, const std::string& group_name,
335  const std::string& base_frame, const std::vector<std::string>& tip_frames,
336  double search_discretization) override;
337 
342  size_t solve(KDL::Frame& pose_frame, const std::vector<double>& vfree, IkSolutionList<IkReal>& solutions) const;
343 
347  void getSolution(const IkSolutionList<IkReal>& solutions, int i, std::vector<double>& solution) const;
348 
352  void getSolution(const IkSolutionList<IkReal>& solutions, const std::vector<double>& ik_seed_state, int i,
353  std::vector<double>& solution) const;
354 
358  double enforceLimits(double val, double min, double max) const;
359 
360  void fillFreeParams(int count, int* array);
361  bool getCount(int& count, const int& max_count, const int& min_count) const;
362 
369  bool sampleRedundantJoint(kinematics::DiscretizationMethod method, std::vector<double>& sampled_joint_vals) const;
370 
372  bool computeRelativeTransform(const std::string& from, const std::string& to, Eigen::Isometry3d& transform,
373  bool& differs_from_identity);
380  void transformToChainFrame(const geometry_msgs::msg::Pose& ik_pose, KDL::Frame& ik_pose_chain) const;
381 }; // end class
382 
383 bool IKFastKinematicsPlugin::computeRelativeTransform(const std::string& from, const std::string& to,
384  Eigen::Isometry3d& transform, bool& differs_from_identity)
385 {
386  RobotStatePtr robot_state = std::make_shared<RobotState>(robot_model_);
387  robot_state->setToDefaultValues();
388 
389  auto* from_link = robot_model_->getLinkModel(from);
390  auto* to_link = robot_model_->getLinkModel(to);
391  if (!from_link || !to_link)
392  return false;
393 
394  if (robot_model_->getRigidlyConnectedParentLinkModel(from_link) !=
395  robot_model_->getRigidlyConnectedParentLinkModel(to_link))
396  {
397  RCLCPP_ERROR_STREAM(LOGGER, "Link frames " << from << " and " << to << " are not rigidly connected.");
398  return false;
399  }
400 
401  transform = robot_state->getGlobalLinkTransform(from_link).inverse() * robot_state->getGlobalLinkTransform(to_link);
402  differs_from_identity = !transform.matrix().isIdentity();
403  return true;
404 }
405 
406 bool IKFastKinematicsPlugin::initialize(const rclcpp::Node::SharedPtr& node, const moveit::core::RobotModel& robot_model, const std::string& group_name,
407  const std::string& base_frame, const std::vector<std::string>& tip_frames,
408  double search_discretization)
409 {
410  if (tip_frames.size() != 1)
411  {
412  RCLCPP_ERROR(LOGGER, "Expecting exactly one tip frame.");
413  return false;
414  }
415 
416  storeValues(robot_model, group_name, base_frame, tip_frames, search_discretization);
417  if (!lookupParam(node, "link_prefix", link_prefix_, std::string("")))
418  {
419  RCLCPP_INFO(LOGGER, "Using empty link_prefix.");
420  }
421  else
422  {
423  RCLCPP_INFO_STREAM(LOGGER, "Using link_prefix: '" << link_prefix_ << "'");
424  }
425 
426  // verbose error output. subsequent checks in computeRelativeTransform return false then
427  if (!robot_model.hasLinkModel(tip_frames_[0]))
428  RCLCPP_ERROR_STREAM(LOGGER, "tip frame '" << tip_frames_[0] << "' does not exist.");
429  if (!robot_model.hasLinkModel(base_frame_))
430  RCLCPP_ERROR_STREAM(LOGGER, "base_frame '" << base_frame_ << "' does not exist.");
431 
432  if (!robot_model.hasLinkModel(link_prefix_ + IKFAST_TIP_FRAME_))
433  RCLCPP_ERROR_STREAM(LOGGER, "prefixed tip frame '" << link_prefix_ + IKFAST_TIP_FRAME_
434  << "' does not exist. "
435  "Please check your link_prefix parameter.");
436  if (!robot_model.hasLinkModel(link_prefix_ + IKFAST_BASE_FRAME_))
437  RCLCPP_ERROR_STREAM(LOGGER, "prefixed base frame '" << link_prefix_ + IKFAST_BASE_FRAME_
438  << "' does not exist. "
439  "Please check your link_prefix parameter.");
440  // This IKFast solution was generated with IKFAST_TIP_FRAME_ and IKFAST_BASE_FRAME_.
441  // It is often the case that fixed joints are added to these links to model things like
442  // a robot mounted on a table or a robot with an end effector attached to the last link.
443  // To support these use cases, we store the transform from the IKFAST_BASE_FRAME_ to the
444  // base_frame_ and IKFAST_TIP_FRAME_ the tip_frame_ and transform to the input pose accordingly
445  if (!computeRelativeTransform(tip_frames_[0], link_prefix_ + IKFAST_TIP_FRAME_, group_tip_to_chain_tip_,
446  tip_transform_required_) ||
447  !computeRelativeTransform(link_prefix_ + IKFAST_BASE_FRAME_, base_frame_, chain_base_to_group_base_,
448  base_transform_required_))
449  {
450  return false;
451  }
452 
453  // IKFast56/61
454  fillFreeParams(GetNumFreeParameters(), GetFreeParameters());
455 
456  if (free_params_.size() > 1)
457  {
458  RCLCPP_ERROR(LOGGER, "Only one free joint parameter supported!");
459  return false;
460  }
461  else if (free_params_.size() == 1)
462  {
463  redundant_joint_indices_.clear();
464  redundant_joint_indices_.push_back(free_params_[0]);
465  KinematicsBase::setSearchDiscretization(search_discretization);
466  }
467 
468  const moveit::core::JointModelGroup* jmg = robot_model_->getJointModelGroup(group_name);
469  if (!jmg)
470  {
471  RCLCPP_ERROR_STREAM(LOGGER, "Unknown planning group: " << group_name);
472  return false;
473  }
474 
475  RCLCPP_DEBUG_STREAM(LOGGER, "Registering joints and links");
476  const moveit::core::LinkModel* link = robot_model_->getLinkModel(tip_frames_[0]);
477  const moveit::core::LinkModel* base_link = robot_model_->getLinkModel(base_frame_);
478  while (link && link != base_link)
479  {
480  RCLCPP_DEBUG_STREAM(LOGGER, "Link " << link->getName());
481  link_names_.push_back(link->getName());
482  const moveit::core::JointModel* joint = link->getParentJointModel();
483  if (joint->getType() != joint->UNKNOWN && joint->getType() != joint->FIXED && joint->getVariableCount() == 1)
484  {
485  RCLCPP_DEBUG_STREAM(LOGGER, "Adding joint " << joint->getName());
486 
487  joint_names_.push_back(joint->getName());
488  const moveit::core::VariableBounds& bounds = joint->getVariableBounds()[0];
489  joint_has_limits_vector_.push_back(bounds.position_bounded_);
490  joint_min_vector_.push_back(bounds.min_position_);
491  joint_max_vector_.push_back(bounds.max_position_);
492  }
493  link = link->getParentLinkModel();
494  }
495 
496  if (joint_names_.size() != num_joints_)
497  {
498  RCLCPP_FATAL(LOGGER, "Joint numbers of RobotModel (%zd) and IKFast solver (%zd) do not match", joint_names_.size(),
499  num_joints_);
500  return false;
501  }
502 
503  std::reverse(link_names_.begin(), link_names_.end());
504  std::reverse(joint_names_.begin(), joint_names_.end());
505  std::reverse(joint_min_vector_.begin(), joint_min_vector_.end());
506  std::reverse(joint_max_vector_.begin(), joint_max_vector_.end());
507  std::reverse(joint_has_limits_vector_.begin(), joint_has_limits_vector_.end());
508 
509  for (size_t joint_id = 0; joint_id < num_joints_; ++joint_id)
510  RCLCPP_DEBUG_STREAM(LOGGER, joint_names_[joint_id] << " " << joint_min_vector_[joint_id] << " "
511  << joint_max_vector_[joint_id] << " "
512  << joint_has_limits_vector_[joint_id]);
513 
514  initialized_ = true;
515  return true;
516 }
517 
518 void IKFastKinematicsPlugin::setSearchDiscretization(const std::map<unsigned int, double>& discretization)
519 {
520  if (discretization.empty())
521  {
522  RCLCPP_ERROR(LOGGER, "The 'discretization' map is empty");
523  return;
524  }
525 
526  if (redundant_joint_indices_.empty())
527  {
528  RCLCPP_ERROR_STREAM(LOGGER, "This group's solver doesn't support redundant joints");
529  return;
530  }
531 
532  if (discretization.begin()->first != redundant_joint_indices_[0])
533  {
534  std::string redundant_joint = joint_names_[free_params_[0]];
535  RCLCPP_ERROR_STREAM(LOGGER, "Attempted to discretize a non-redundant joint "
536  << discretization.begin()->first << ", only joint '" << redundant_joint
537  << "' with index " << redundant_joint_indices_[0] << " is redundant.");
538  return;
539  }
540 
541  if (discretization.begin()->second <= 0.0)
542  {
543  RCLCPP_ERROR_STREAM(LOGGER, "Discretization can not takes values that are <= 0");
544  return;
545  }
546 
547  redundant_joint_discretization_.clear();
548  redundant_joint_discretization_[redundant_joint_indices_[0]] = discretization.begin()->second;
549 }
550 
551 bool IKFastKinematicsPlugin::setRedundantJoints(const std::vector<unsigned int>& /* unused */)
552 {
553  RCLCPP_ERROR_STREAM(LOGGER, "Changing the redundant joints isn't permitted by this group's solver ");
554  return false;
555 }
556 
557 size_t IKFastKinematicsPlugin::solve(KDL::Frame& pose_frame, const std::vector<double>& vfree,
558  IkSolutionList<IkReal>& solutions) const
559 {
560  // IKFast56/61
561  solutions.Clear();
562 
563  double trans[3];
564  trans[0] = pose_frame.p[0]; //-.18;
565  trans[1] = pose_frame.p[1];
566  trans[2] = pose_frame.p[2];
567 
568  KDL::Rotation mult;
569  KDL::Vector direction;
570 
571  switch (GetIkType())
572  {
573  case IKP_Transform6D:
574  case IKP_Translation3D:
575  // For **Transform6D**, eerot is 9 values for the 3x3 rotation matrix. For **Translation3D**, these are ignored.
576 
577  mult = pose_frame.M;
578 
579  double vals[9];
580  vals[0] = mult(0, 0);
581  vals[1] = mult(0, 1);
582  vals[2] = mult(0, 2);
583  vals[3] = mult(1, 0);
584  vals[4] = mult(1, 1);
585  vals[5] = mult(1, 2);
586  vals[6] = mult(2, 0);
587  vals[7] = mult(2, 1);
588  vals[8] = mult(2, 2);
589 
590  // IKFast56/61
591  ComputeIk(trans, vals, vfree.size() > 0 ? &vfree[0] : nullptr, solutions);
592  return solutions.GetNumSolutions();
593 
594  case IKP_Direction3D:
595  case IKP_Ray4D:
597  // For **Direction3D**, **Ray4D**, and **TranslationDirection5D**, the first 3 values represent the target
598  // direction.
599 
600  direction = pose_frame.M * KDL::Vector(0, 0, 1);
601  ComputeIk(trans, direction.data, vfree.size() > 0 ? &vfree[0] : nullptr, solutions);
602  return solutions.GetNumSolutions();
603 
607  // For *TranslationXAxisAngle4D*, *TranslationYAxisAngle4D*, *TranslationZAxisAngle4D* - end effector origin
608  // reaches desired 3D translation, manipulator direction makes a specific angle with x/y/z-axis (defined in the
609  // manipulator base link’s coordinate system)
610  RCLCPP_ERROR(LOGGER, "IK for this IkParameterizationType not implemented yet.");
611  return 0;
612 
614  // For **TranslationLocalGlobal6D**, the diagonal elements ([0],[4],[8]) are the local translation inside the end
615  // effector coordinate system.
616  RCLCPP_ERROR(LOGGER, "IK for this IkParameterizationType not implemented yet.");
617  return 0;
618 
619  case IKP_Rotation3D:
620  case IKP_Lookat3D:
621  case IKP_TranslationXY2D:
623  RCLCPP_ERROR(LOGGER, "IK for this IkParameterizationType not implemented yet.");
624  return 0;
625 
627  double roll, pitch, yaw;
628  // For **TranslationXAxisAngleZNorm4D** - end effector origin reaches desired 3D translation, manipulator
629  // direction needs to be orthogonal to z axis and be rotated at a certain angle starting from the x axis (defined
630  // in the manipulator base link’s coordinate system)
631  pose_frame.M.GetRPY(roll, pitch, yaw);
632  ComputeIk(trans, &yaw, vfree.size() > 0 ? &vfree[0] : nullptr, solutions);
633  return solutions.GetNumSolutions();
634 
636  // For **TranslationYAxisAngleXNorm4D** - end effector origin reaches desired 3D translation, manipulator
637  // direction needs to be orthogonal to x axis and be rotated at a certain angle starting from the y axis (defined
638  // in the manipulator base link’s coordinate system)
639  pose_frame.M.GetRPY(roll, pitch, yaw);
640  ComputeIk(trans, &roll, vfree.size() > 0 ? &vfree[0] : nullptr, solutions);
641  return solutions.GetNumSolutions();
642 
644  // For **TranslationZAxisAngleYNorm4D** - end effector origin reaches desired 3D translation, manipulator
645  // direction needs to be orthogonal to y axis and be rotated at a certain angle starting from the z axis (defined
646  // in the manipulator base link’s coordinate system)
647  pose_frame.M.GetRPY(roll, pitch, yaw);
648  ComputeIk(trans, &pitch, vfree.size() > 0 ? &vfree[0] : nullptr, solutions);
649  return solutions.GetNumSolutions();
650 
651  default:
652  RCLCPP_ERROR(LOGGER, "Unknown IkParameterizationType! "
653  "Was the solver generated with an incompatible version of Openrave?");
654  return 0;
655  }
656 }
657 
658 void IKFastKinematicsPlugin::getSolution(const IkSolutionList<IkReal>& solutions, int i,
659  std::vector<double>& solution) const
660 {
661  solution.clear();
662  solution.resize(num_joints_);
663 
664  // IKFast56/61
665  const IkSolutionBase<IkReal>& sol = solutions.GetSolution(i);
666  std::vector<IkReal> vsolfree(sol.GetFree().size());
667  sol.GetSolution(&solution[0], vsolfree.size() > 0 ? &vsolfree[0] : nullptr);
668 
669  for (std::size_t joint_id = 0; joint_id < num_joints_; ++joint_id)
670  {
671  if (joint_has_limits_vector_[joint_id])
672  {
673  solution[joint_id] = enforceLimits(solution[joint_id], joint_min_vector_[joint_id], joint_max_vector_[joint_id]);
674  }
675  }
676 }
677 
678 void IKFastKinematicsPlugin::getSolution(const IkSolutionList<IkReal>& solutions,
679  const std::vector<double>& ik_seed_state, int i,
680  std::vector<double>& solution) const
681 {
682  solution.clear();
683  solution.resize(num_joints_);
684 
685  // IKFast56/61
686  const IkSolutionBase<IkReal>& sol = solutions.GetSolution(i);
687  std::vector<IkReal> vsolfree(sol.GetFree().size());
688  sol.GetSolution(&solution[0], vsolfree.size() > 0 ? &vsolfree[0] : nullptr);
689 
690  // rotate joints by +/-360° where it is possible and useful
691  for (std::size_t i = 0; i < num_joints_; ++i)
692  {
693  if (joint_has_limits_vector_[i])
694  {
695  solution[i] = enforceLimits(solution[i], joint_min_vector_[i], joint_max_vector_[i]);
696  double signed_distance = solution[i] - ik_seed_state[i];
697  while (signed_distance > M_PI && solution[i] - 2 * M_PI > (joint_min_vector_[i] - LIMIT_TOLERANCE))
698  {
699  signed_distance -= 2 * M_PI;
700  solution[i] -= 2 * M_PI;
701  }
702  while (signed_distance < -M_PI && solution[i] + 2 * M_PI < (joint_max_vector_[i] + LIMIT_TOLERANCE))
703  {
704  signed_distance += 2 * M_PI;
705  solution[i] += 2 * M_PI;
706  }
707  }
708  }
709 }
710 
711 double IKFastKinematicsPlugin::enforceLimits(double joint_value, double min, double max) const
712 {
713  // If the joint_value is greater than max subtract 2 * PI until it is less than the max
714  while (joint_value > max)
715  {
716  joint_value -= 2 * M_PI;
717  }
718 
719  // If the joint_value is less than the min, add 2 * PI until it is more than the min
720  while (joint_value < min)
721  {
722  joint_value += 2 * M_PI;
723  }
724  return joint_value;
725 }
726 
727 void IKFastKinematicsPlugin::fillFreeParams(int count, int* array)
728 {
729  free_params_.clear();
730  for (int i = 0; i < count; ++i)
731  free_params_.push_back(array[i]);
732 }
733 
734 bool IKFastKinematicsPlugin::getCount(int& count, const int& max_count, const int& min_count) const
735 {
736  if (count > 0)
737  {
738  if (-count >= min_count)
739  {
740  count = -count;
741  return true;
742  }
743  else if (count + 1 <= max_count)
744  {
745  count = count + 1;
746  return true;
747  }
748  else
749  {
750  return false;
751  }
752  }
753  else
754  {
755  if (1 - count <= max_count)
756  {
757  count = 1 - count;
758  return true;
759  }
760  else if (count - 1 >= min_count)
761  {
762  count = count - 1;
763  return true;
764  }
765  else
766  return false;
767  }
768 }
769 
770 bool IKFastKinematicsPlugin::getPositionFK(const std::vector<std::string>& link_names,
771  const std::vector<double>& joint_angles,
772  std::vector<geometry_msgs::msg::Pose>& poses) const
773 {
774  if (GetIkType() != IKP_Transform6D)
775  {
776  // ComputeFk() is the inverse function of ComputeIk(), so the format of
777  // eerot differs depending on IK type. The Transform6D IK type is the only
778  // one for which a 3x3 rotation matrix is returned, which means we can only
779  // compute FK for that IK type.
780  RCLCPP_ERROR(LOGGER, "Can only compute FK for Transform6D IK type!");
781  return false;
782  }
783 
784  KDL::Frame p_out;
785  if (link_names.size() == 0)
786  {
787  RCLCPP_WARN_STREAM(LOGGER, "Link names with nothing");
788  return false;
789  }
790 
791  if (link_names.size() != 1 || link_names[0] != getTipFrame())
792  {
793  RCLCPP_ERROR(LOGGER, "Can compute FK for %s only", getTipFrame().c_str());
794  return false;
795  }
796 
797  bool valid = true;
798 
799  IkReal eerot[9], eetrans[3];
800 
801  if (joint_angles.size() != num_joints_)
802  {
803  RCLCPP_ERROR(LOGGER, "Unexpected number of joint angles");
804  return false;
805  }
806 
807  std::vector<IkReal> angles(num_joints_, 0);
808  for (unsigned char i = 0; i < num_joints_; i++)
809  angles[i] = joint_angles[i];
810 
811  // IKFast56/61
812  ComputeFk(angles.data(), eetrans, eerot);
813 
814  for (int i = 0; i < 3; ++i)
815  p_out.p.data[i] = eetrans[i];
816 
817  for (int i = 0; i < 9; ++i)
818  p_out.M.data[i] = eerot[i];
819 
820  poses.resize(1);
821  poses[0] = tf2::toMsg(p_out);
822 
823  return valid;
824 }
825 
826 bool IKFastKinematicsPlugin::searchPositionIK(const geometry_msgs::msg::Pose& ik_pose,
827  const std::vector<double>& ik_seed_state, double timeout,
828  std::vector<double>& solution, moveit_msgs::msg::MoveItErrorCodes& error_code,
830 {
831  std::vector<double> consistency_limits;
832  return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, IKCallbackFn(), error_code,
833  options);
834 }
835 
836 bool IKFastKinematicsPlugin::searchPositionIK(const geometry_msgs::msg::Pose& ik_pose,
837  const std::vector<double>& ik_seed_state, double timeout,
838  const std::vector<double>& consistency_limits,
839  std::vector<double>& solution, moveit_msgs::msg::MoveItErrorCodes& error_code,
841 {
842  return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, IKCallbackFn(), error_code,
843  options);
844 }
845 
846 bool IKFastKinematicsPlugin::searchPositionIK(const geometry_msgs::msg::Pose& ik_pose,
847  const std::vector<double>& ik_seed_state, double timeout,
848  std::vector<double>& solution, const IKCallbackFn& solution_callback,
849  moveit_msgs::msg::MoveItErrorCodes& error_code,
851 {
852  std::vector<double> consistency_limits;
853  return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, solution_callback, error_code,
854  options);
855 }
856 
857 bool IKFastKinematicsPlugin::searchPositionIK(const geometry_msgs::msg::Pose& ik_pose,
858  const std::vector<double>& ik_seed_state, double /* unused */,
859  const std::vector<double>& consistency_limits,
860  std::vector<double>& solution, const IKCallbackFn& solution_callback,
861  moveit_msgs::msg::MoveItErrorCodes& error_code,
863 {
864  // "SEARCH_MODE" is fixed during code generation
865  SEARCH_MODE search_mode = OPTIMIZE_MAX_JOINT;
866 
867  // Check if there are no redundant joints
868  if (free_params_.size() == 0)
869  {
870  RCLCPP_DEBUG_STREAM(LOGGER, "No need to search since no free params/redundant joints");
871 
872  std::vector<geometry_msgs::msg::Pose> ik_poses(1, ik_pose);
873  std::vector<std::vector<double>> solutions;
874  kinematics::KinematicsResult kinematic_result;
875  // Find all IK solutions within joint limits
876  if (!getPositionIK(ik_poses, ik_seed_state, solutions, kinematic_result, options))
877  {
878  RCLCPP_DEBUG_STREAM(LOGGER, "No solution whatsoever");
879  error_code.val = moveit_msgs::msg::MoveItErrorCodes::NO_IK_SOLUTION;
880  return false;
881  }
882 
883  // sort solutions by their distance to the seed
884  std::vector<LimitObeyingSol> solutions_obey_limits;
885  for (std::size_t i = 0; i < solutions.size(); ++i)
886  {
887  double dist_from_seed = 0.0;
888  for (std::size_t j = 0; j < ik_seed_state.size(); ++j)
889  {
890  dist_from_seed += fabs(ik_seed_state[j] - solutions[i][j]);
891  }
892 
893  solutions_obey_limits.push_back({ solutions[i], dist_from_seed });
894  }
895  std::sort(solutions_obey_limits.begin(), solutions_obey_limits.end());
896 
897  // check for collisions if a callback is provided
898  if (solution_callback)
899  {
900  for (std::size_t i = 0; i < solutions_obey_limits.size(); ++i)
901  {
902  solution_callback(ik_pose, solutions_obey_limits[i].value, error_code);
903  if (error_code.val == moveit_msgs::msg::MoveItErrorCodes::SUCCESS)
904  {
905  solution = solutions_obey_limits[i].value;
906  RCLCPP_DEBUG_STREAM(LOGGER, "Solution passes callback");
907  return true;
908  }
909  }
910 
911  RCLCPP_DEBUG_STREAM(LOGGER, "Solution has error code " << error_code.val);
912  return false;
913  }
914  else
915  {
916  solution = solutions_obey_limits[0].value;
917  error_code.val = moveit_msgs::msg::MoveItErrorCodes::SUCCESS;
918  return true; // no collision check callback provided
919  }
920  }
921 
922  // -------------------------------------------------------------------------------------------------
923  // Error Checking
924  if (!initialized_)
925  {
926  RCLCPP_ERROR_STREAM(LOGGER, "Kinematics not active");
927  error_code.val = error_code.NO_IK_SOLUTION;
928  return false;
929  }
930 
931  if (ik_seed_state.size() != num_joints_)
932  {
933  RCLCPP_ERROR_STREAM(LOGGER,
934  "Seed state must have size " << num_joints_ << " instead of size " << ik_seed_state.size());
935  error_code.val = error_code.NO_IK_SOLUTION;
936  return false;
937  }
938 
939  if (!consistency_limits.empty() && consistency_limits.size() != num_joints_)
940  {
941  RCLCPP_ERROR_STREAM(LOGGER, "Consistency limits be empty or must have size " << num_joints_ << " instead of size "
942  << consistency_limits.size());
943  error_code.val = error_code.NO_IK_SOLUTION;
944  return false;
945  }
946 
947  // -------------------------------------------------------------------------------------------------
948  // Initialize
949 
950  KDL::Frame frame;
951  transformToChainFrame(ik_pose, frame);
952 
953  std::vector<double> vfree(free_params_.size());
954 
955  int counter = 0;
956 
957  double initial_guess = ik_seed_state[free_params_[0]];
958  vfree[0] = initial_guess;
959 
960  // -------------------------------------------------------------------------------------------------
961  // Handle consistency limits if needed
962  int num_positive_increments;
963  int num_negative_increments;
964  double search_discretization = redundant_joint_discretization_.at(free_params_[0]);
965 
966  if (!consistency_limits.empty())
967  {
968  // MoveIt replaced consistency_limit (scalar) w/ consistency_limits (vector)
969  // Assume [0]th free_params element for now. Probably wrong.
970  double max_limit = fmin(joint_max_vector_[free_params_[0]], initial_guess + consistency_limits[free_params_[0]]);
971  double min_limit = fmax(joint_min_vector_[free_params_[0]], initial_guess - consistency_limits[free_params_[0]]);
972 
973  num_positive_increments = static_cast<int>((max_limit - initial_guess) / search_discretization);
974  num_negative_increments = static_cast<int>((initial_guess - min_limit) / search_discretization);
975  }
976  else // no consistency limits provided
977  {
978  num_positive_increments = (joint_max_vector_[free_params_[0]] - initial_guess) / search_discretization;
979  num_negative_increments = (initial_guess - joint_min_vector_[free_params_[0]]) / search_discretization;
980  }
981 
982  // -------------------------------------------------------------------------------------------------
983  // Begin searching
984 
985  RCLCPP_DEBUG_STREAM(LOGGER, "Free param is " << free_params_[0] << " initial guess is " << initial_guess
986  << ", # positive increments: " << num_positive_increments
987  << ", # negative increments: " << num_negative_increments);
988  if ((search_mode & OPTIMIZE_MAX_JOINT) && (num_positive_increments + num_negative_increments) > 1000)
989  RCLCPP_WARN_STREAM_ONCE(LOGGER, "Large search space, consider increasing the search discretization");
990 
991  double best_costs = -1.0;
992  std::vector<double> best_solution;
993  int nattempts = 0, nvalid = 0;
994 
995  while (true)
996  {
997  IkSolutionList<IkReal> solutions;
998  size_t numsol = solve(frame, vfree, solutions);
999 
1000  RCLCPP_DEBUG_STREAM(LOGGER, "Found " << numsol << " solutions from IKFast");
1001 
1002  if (numsol > 0)
1003  {
1004  for (size_t s = 0; s < numsol; ++s)
1005  {
1006  nattempts++;
1007  std::vector<double> sol;
1008  getSolution(solutions, ik_seed_state, s, sol);
1009 
1010  bool obeys_limits = true;
1011  for (size_t i = 0; i < sol.size(); i++)
1012  {
1013  if (joint_has_limits_vector_[i] && (sol[i] < joint_min_vector_[i] || sol[i] > joint_max_vector_[i]))
1014  {
1015  obeys_limits = false;
1016  break;
1017  }
1018  // RCLCPP_INFO_STREAM(LOGGER,"Num " << i << " value " << sol[i] << " has limits " <<
1019  // joint_has_limits_vector_[i] << " " << joint_min_vector_[i] << " " << joint_max_vector_[i]);
1020  }
1021  if (obeys_limits)
1022  {
1023  getSolution(solutions, ik_seed_state, s, solution);
1024 
1025  // This solution is within joint limits, now check if in collision (if callback provided)
1026  if (solution_callback)
1027  {
1028  solution_callback(ik_pose, solution, error_code);
1029  }
1030  else
1031  {
1032  error_code.val = error_code.SUCCESS;
1033  }
1034 
1035  if (error_code.val == error_code.SUCCESS)
1036  {
1037  nvalid++;
1038  if (search_mode & OPTIMIZE_MAX_JOINT)
1039  {
1040  // Costs for solution: Largest joint motion
1041  double costs = 0.0;
1042  for (unsigned int i = 0; i < solution.size(); i++)
1043  {
1044  double d = fabs(ik_seed_state[i] - solution[i]);
1045  if (d > costs)
1046  costs = d;
1047  }
1048  if (costs < best_costs || best_costs == -1.0)
1049  {
1050  best_costs = costs;
1051  best_solution = solution;
1052  }
1053  }
1054  else
1055  // Return first feasible solution
1056  return true;
1057  }
1058  }
1059  }
1060  }
1061 
1062  if (!getCount(counter, num_positive_increments, -num_negative_increments))
1063  {
1064  // Everything searched
1065  error_code.val = moveit_msgs::msg::MoveItErrorCodes::NO_IK_SOLUTION;
1066  break;
1067  }
1068 
1069  vfree[0] = initial_guess + search_discretization * counter;
1070  // RCLCPP_DEBUG_STREAM(LOGGER,"Attempt " << counter << " with 0th free joint having value " << vfree[0]);
1071  }
1072 
1073  RCLCPP_DEBUG_STREAM(LOGGER, "Valid solutions: " << nvalid << "/" << nattempts);
1074 
1075  if ((search_mode & OPTIMIZE_MAX_JOINT) && best_costs != -1.0)
1076  {
1077  solution = best_solution;
1078  error_code.val = error_code.SUCCESS;
1079  return true;
1080  }
1081 
1082  // No solution found
1083  error_code.val = moveit_msgs::msg::MoveItErrorCodes::NO_IK_SOLUTION;
1084  return false;
1085 }
1086 
1087 // Used when there are no redundant joints - aka no free params
1088 bool IKFastKinematicsPlugin::getPositionIK(const geometry_msgs::msg::Pose& ik_pose, const std::vector<double>& ik_seed_state,
1089  std::vector<double>& solution, moveit_msgs::msg::MoveItErrorCodes& error_code,
1090  const kinematics::KinematicsQueryOptions& /* unused */) const
1091 {
1092  RCLCPP_DEBUG_STREAM(LOGGER, "getPositionIK");
1093 
1094  if (!initialized_)
1095  {
1096  RCLCPP_ERROR(LOGGER, "kinematics not active");
1097  return false;
1098  }
1099 
1100  if (ik_seed_state.size() < num_joints_)
1101  {
1102  RCLCPP_ERROR_STREAM(LOGGER, "ik_seed_state only has " << ik_seed_state.size()
1103  << " entries, this ikfast solver requires " << num_joints_);
1104  return false;
1105  }
1106 
1107  // Check if seed is in bound
1108  for (std::size_t i = 0; i < ik_seed_state.size(); i++)
1109  {
1110  // Add tolerance to limit check
1111  if (joint_has_limits_vector_[i] && ((ik_seed_state[i] < (joint_min_vector_[i] - LIMIT_TOLERANCE)) ||
1112  (ik_seed_state[i] > (joint_max_vector_[i] + LIMIT_TOLERANCE))))
1113  {
1114  RCLCPP_DEBUG_STREAM(LOGGER, "IK seed not in limits! " << static_cast<int>(i) << " value " << ik_seed_state[i]
1115  << " has limit: " << joint_has_limits_vector_[i] << " being "
1116  << joint_min_vector_[i] << " to " << joint_max_vector_[i]);
1117  return false;
1118  }
1119  }
1120 
1121  std::vector<double> vfree(free_params_.size());
1122  for (std::size_t i = 0; i < free_params_.size(); ++i)
1123  {
1124  int p = free_params_[i];
1125  RCLCPP_ERROR(LOGGER, "%u is %f", p, ik_seed_state[p]); // DTC
1126  vfree[i] = ik_seed_state[p];
1127  }
1128 
1129  KDL::Frame frame;
1130  transformToChainFrame(ik_pose, frame);
1131 
1132  IkSolutionList<IkReal> solutions;
1133  size_t numsol = solve(frame, vfree, solutions);
1134  RCLCPP_DEBUG_STREAM(LOGGER, "Found " << numsol << " solutions from IKFast");
1135 
1136  std::vector<LimitObeyingSol> solutions_obey_limits;
1137 
1138  if (numsol)
1139  {
1140  std::vector<double> solution_obey_limits;
1141  for (std::size_t s = 0; s < numsol; ++s)
1142  {
1143  std::vector<double> sol;
1144  getSolution(solutions, ik_seed_state, s, sol);
1145  RCLCPP_DEBUG(LOGGER, "Sol %d: %e %e %e %e %e %e", static_cast<int>(s), sol[0], sol[1], sol[2], sol[3],
1146  sol[4], sol[5]);
1147 
1148  bool obeys_limits = true;
1149  for (std::size_t i = 0; i < sol.size(); i++)
1150  {
1151  // Add tolerance to limit check
1152  if (joint_has_limits_vector_[i] && ((sol[i] < (joint_min_vector_[i] - LIMIT_TOLERANCE)) ||
1153  (sol[i] > (joint_max_vector_[i] + LIMIT_TOLERANCE))))
1154  {
1155  // One element of solution is not within limits
1156  obeys_limits = false;
1157  RCLCPP_DEBUG_STREAM(LOGGER, "Not in limits! " << static_cast<int>(i) << " value " << sol[i]
1158  << " has limit: " << joint_has_limits_vector_[i] << " being "
1159  << joint_min_vector_[i] << " to " << joint_max_vector_[i]);
1160  break;
1161  }
1162  }
1163  if (obeys_limits)
1164  {
1165  // All elements of this solution obey limits
1166  getSolution(solutions, ik_seed_state, s, solution_obey_limits);
1167  double dist_from_seed = 0.0;
1168  for (std::size_t i = 0; i < ik_seed_state.size(); ++i)
1169  {
1170  dist_from_seed += fabs(ik_seed_state[i] - solution_obey_limits[i]);
1171  }
1172 
1173  solutions_obey_limits.push_back({ solution_obey_limits, dist_from_seed });
1174  }
1175  }
1176  }
1177  else
1178  {
1179  RCLCPP_DEBUG_STREAM(LOGGER, "No IK solution");
1180  }
1181 
1182  // Sort the solutions under limits and find the one that is closest to ik_seed_state
1183  if (!solutions_obey_limits.empty())
1184  {
1185  std::sort(solutions_obey_limits.begin(), solutions_obey_limits.end());
1186  solution = solutions_obey_limits[0].value;
1187  error_code.val = moveit_msgs::msg::MoveItErrorCodes::SUCCESS;
1188  return true;
1189  }
1190 
1191  error_code.val = moveit_msgs::msg::MoveItErrorCodes::NO_IK_SOLUTION;
1192  return false;
1193 }
1194 
1195 bool IKFastKinematicsPlugin::getPositionIK(const std::vector<geometry_msgs::msg::Pose>& ik_poses,
1196  const std::vector<double>& ik_seed_state,
1197  std::vector<std::vector<double>>& solutions,
1200 {
1201  RCLCPP_DEBUG_STREAM(LOGGER, "getPositionIK with multiple solutions");
1202 
1203  if (!initialized_)
1204  {
1205  RCLCPP_ERROR(LOGGER, "kinematics not active");
1207  return false;
1208  }
1209 
1210  if (ik_poses.empty())
1211  {
1212  RCLCPP_ERROR(LOGGER, "ik_poses is empty");
1214  return false;
1215  }
1216 
1217  if (ik_poses.size() > 1)
1218  {
1219  RCLCPP_ERROR(LOGGER, "ik_poses contains multiple entries, only one is allowed");
1221  return false;
1222  }
1223 
1224  if (ik_seed_state.size() < num_joints_)
1225  {
1226  RCLCPP_ERROR_STREAM(LOGGER, "ik_seed_state only has " << ik_seed_state.size()
1227  << " entries, this ikfast solver requires " << num_joints_);
1228  return false;
1229  }
1230 
1231  KDL::Frame frame;
1232  transformToChainFrame(ik_poses[0], frame);
1233 
1234  // solving ik
1235  std::vector<IkSolutionList<IkReal>> solution_set;
1236  IkSolutionList<IkReal> ik_solutions;
1237  std::vector<double> vfree;
1238  int numsol = 0;
1239  std::vector<double> sampled_joint_vals;
1240  if (!redundant_joint_indices_.empty())
1241  {
1242  // initializing from seed
1243  sampled_joint_vals.push_back(ik_seed_state[redundant_joint_indices_[0]]);
1244 
1245  // checking joint limits when using no discretization
1246  if (options.discretization_method == kinematics::DiscretizationMethods::NO_DISCRETIZATION &&
1247  joint_has_limits_vector_[redundant_joint_indices_.front()])
1248  {
1249  double joint_min = joint_min_vector_[redundant_joint_indices_.front()];
1250  double joint_max = joint_max_vector_[redundant_joint_indices_.front()];
1251 
1252  double jv = sampled_joint_vals[0];
1253  if (!((jv > (joint_min - LIMIT_TOLERANCE)) && (jv < (joint_max + LIMIT_TOLERANCE))))
1254  {
1256  RCLCPP_ERROR_STREAM(LOGGER, "ik seed is out of bounds");
1257  return false;
1258  }
1259  }
1260 
1261  // computing all solutions sets for each sampled value of the redundant joint
1262  if (!sampleRedundantJoint(options.discretization_method, sampled_joint_vals))
1263  {
1265  return false;
1266  }
1267 
1268  for (unsigned int i = 0; i < sampled_joint_vals.size(); i++)
1269  {
1270  vfree.clear();
1271  vfree.push_back(sampled_joint_vals[i]);
1272  numsol += solve(frame, vfree, ik_solutions);
1273  solution_set.push_back(ik_solutions);
1274  }
1275  }
1276  else
1277  {
1278  // computing for single solution set
1279  numsol = solve(frame, vfree, ik_solutions);
1280  solution_set.push_back(ik_solutions);
1281  }
1282 
1283  RCLCPP_DEBUG_STREAM(LOGGER, "Found " << numsol << " solutions from IKFast");
1284  bool solutions_found = false;
1285  if (numsol > 0)
1286  {
1287  /*
1288  Iterating through all solution sets and storing those that do not exceed joint limits.
1289  */
1290  for (unsigned int r = 0; r < solution_set.size(); r++)
1291  {
1292  ik_solutions = solution_set[r];
1293  numsol = ik_solutions.GetNumSolutions();
1294  for (int s = 0; s < numsol; ++s)
1295  {
1296  std::vector<double> sol;
1297  getSolution(ik_solutions, ik_seed_state, s, sol);
1298 
1299  bool obeys_limits = true;
1300  for (unsigned int i = 0; i < sol.size(); i++)
1301  {
1302  // Add tolerance to limit check
1303  if (joint_has_limits_vector_[i] && ((sol[i] < (joint_min_vector_[i] - LIMIT_TOLERANCE)) ||
1304  (sol[i] > (joint_max_vector_[i] + LIMIT_TOLERANCE))))
1305  {
1306  // One element of solution is not within limits
1307  obeys_limits = false;
1308  RCLCPP_DEBUG_STREAM(LOGGER, "Not in limits! " << i << " value " << sol[i]
1309  << " has limit: " << joint_has_limits_vector_[i] << " being "
1310  << joint_min_vector_[i] << " to " << joint_max_vector_[i]);
1311  break;
1312  }
1313  }
1314  if (obeys_limits)
1315  {
1316  // All elements of solution obey limits
1317  solutions_found = true;
1318  solutions.push_back(sol);
1319  }
1320  }
1321  }
1322 
1323  if (solutions_found)
1324  {
1326  return true;
1327  }
1328  }
1329  else
1330  {
1331  RCLCPP_DEBUG_STREAM(LOGGER, "No IK solution");
1332  }
1333 
1335  return false;
1336 }
1337 
1338 bool IKFastKinematicsPlugin::sampleRedundantJoint(kinematics::DiscretizationMethod method,
1339  std::vector<double>& sampled_joint_vals) const
1340 {
1341  int index = redundant_joint_indices_.front();
1342  double joint_dscrt = redundant_joint_discretization_.at(index);
1343  double joint_min = joint_min_vector_[index];
1344  double joint_max = joint_max_vector_[index];
1345 
1346  switch (method)
1347  {
1349  {
1350  size_t steps = std::ceil((joint_max - joint_min) / joint_dscrt);
1351  for (size_t i = 0; i < steps; i++)
1352  {
1353  sampled_joint_vals.push_back(joint_min + joint_dscrt * i);
1354  }
1355  sampled_joint_vals.push_back(joint_max);
1356  }
1357  break;
1359  {
1360  int steps = std::ceil((joint_max - joint_min) / joint_dscrt);
1361  steps = steps > 0 ? steps : 1;
1362  double diff = joint_max - joint_min;
1363  for (int i = 0; i < steps; i++)
1364  {
1365  sampled_joint_vals.push_back(((diff * std::rand()) / (static_cast<double>(RAND_MAX))) + joint_min);
1366  }
1367  }
1368 
1369  break;
1371 
1372  break;
1373  default:
1374  RCLCPP_ERROR_STREAM(LOGGER, "Discretization method " << method << " is not supported");
1375  return false;
1376  }
1377 
1378  return true;
1379 }
1380 
1381 void IKFastKinematicsPlugin::transformToChainFrame(const geometry_msgs::msg::Pose& ik_pose, KDL::Frame& ik_pose_chain) const
1382 {
1383  if (tip_transform_required_ || base_transform_required_)
1384  {
1385  Eigen::Isometry3d ik_eigen_pose;
1386  tf2::fromMsg(ik_pose, ik_eigen_pose);
1387  if (tip_transform_required_)
1388  ik_eigen_pose = ik_eigen_pose * group_tip_to_chain_tip_;
1389 
1390  if (base_transform_required_)
1391  ik_eigen_pose = chain_base_to_group_base_ * ik_eigen_pose;
1392 
1393  tf2::transformEigenToKDL(ik_eigen_pose, ik_pose_chain);
1394  }
1395  else
1396  {
1397  tf2::fromMsg(ik_pose, ik_pose_chain);
1398  }
1399 }
1400 
1401 } // namespace prbt_manipulator
1402 
1403 // register IKFastKinematicsPlugin as a KinematicsBase implementation
1404 #include <pluginlib/class_list_macros.hpp>
The discrete solutions are returned in this structure.
Definition: ikfast.h:73
virtual const std::vector< int > & GetFree() const =0
Gets the indices of the configuration space that have to be preset before a full solution can be retu...
virtual void GetSolution(T *solution, const T *freevalues) const =0
gets a concrete solution
Default implementation of IkSolutionListBase.
Definition: ikfast.h:276
virtual const IkSolutionBase< T > & GetSolution(size_t index) const
returns the solution pointer
Definition: ikfast.h:285
virtual size_t GetNumSolutions() const
returns the number of solutions stored
Definition: ikfast.h:296
virtual void Clear()
clears all current solutions, note that any memory addresses returned from GetSolution will be invali...
Definition: ikfast.h:301
Provides an interface for kinematics solvers.
std::function< void(const geometry_msgs::msg::Pose &, const std::vector< double > &, moveit_msgs::msg::MoveItErrorCodes &)> IKCallbackFn
Signature for a callback to validate an IK solution. Typically used for collision checking.
A joint from the robot. Models the transform that this joint applies in the kinematic chain....
Definition: joint_model.h:117
std::size_t getVariableCount() const
Get the number of variables that describe this joint.
Definition: joint_model.h:210
const std::string & getName() const
Get the name of the joint.
Definition: joint_model.h:145
const VariableBounds & getVariableBounds(const std::string &variable) const
Get the bounds for a variable. Throw an exception if the variable was not found.
JointType getType() const
Get the type of joint.
Definition: joint_model.h:151
A link from the robot. Contains the constant transform applied to the link and its geometry.
Definition: link_model.h:72
const JointModel * getParentJointModel() const
Get the joint model whose child this link is. There will always be a parent joint.
Definition: link_model.h:108
const std::string & getName() const
The name of this link.
Definition: link_model.h:86
const LinkModel * getParentLinkModel() const
Get the link model whose child this link is (through some joint). There may not always be a parent li...
Definition: link_model.h:117
Definition of a kinematic model. This class is not thread safe, however multiple instances can be cre...
Definition: robot_model.h:76
bool hasLinkModel(const std::string &name) const
Check if a link exists. Return true if it does.
SEARCH_MODE
Search modes for searchPositionIK(), see there.
Core components of MoveIt.
p
Definition: pick.py:62
a
Definition: plan.py:54
r
Definition: plan.py:56
IkParameterizationType
The types of inverse kinematics parameterizations supported.
@ IKP_Direction3D
direction on end effector coordinate system reaches desired direction
@ IKP_UniqueIdMask
the mask for the unique ids
@ IKP_TranslationXY2D
2D translation along XY plane
@ IKP_NumberOfParameterizations
number of parameterizations (does not count IKP_None)
@ IKP_TranslationLocalGlobal6D
local point on end effector origin reaches desired 3D global point
@ IKP_Ray4D
ray on end effector coordinate system reaches desired global ray
@ IKP_Translation3D
end effector origin reaches desired 3D translation
@ IKP_Rotation3D
end effector reaches desired 3D rotation
@ IKP_VelocityDataBit
bit is set if the data represents the time-derivate velocity of an IkParameterization
@ IKP_Transform6D
end effector reaches desired 6D transformation
@ IKP_Lookat3D
direction on end effector coordinate system points to desired 3D position
d
Definition: setup.py:4
PLUGINLIB_EXPORT_CLASS(prbt_manipulator::IKFastKinematicsPlugin, kinematics::KinematicsBase)
const double LIMIT_TOLERANCE
IKFAST_API int * GetFreeParameters()
IKFAST_API int GetNumJoints()
IKFAST_API int GetIkType()
IKFAST_API void ComputeFk(const IkReal *j, IkReal *eetrans, IkReal *eerot)
IKFAST_API bool ComputeIk(const IkReal *eetrans, const IkReal *eerot, const IkReal *pfree, IkSolutionListBase< IkReal > &solutions)
IKFAST_API int GetNumFreeParameters()
A set of options for the kinematics solver.