moveit2
The MoveIt Motion Planning Framework for ROS 2.
Loading...
Searching...
No Matches
NearestNeighborsGNAT.hpp
Go to the documentation of this file.
1/*********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2011, Rice University
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the Rice University nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *********************************************************************/
34
35/* Author: Mark Moll, Bryant Gipson */
36
37// This file is a slightly modified version of <ompl/datastructures/NearestNeighborsGNAT.h>
38
39#pragma once
40
42#include <rsl/random.hpp>
43#include <algorithm>
44#include <queue>
45#include <unordered_set>
46#include <utility>
47#include "GreedyKCenters.hpp"
48#include "NearestNeighbors.hpp"
49#include <iostream>
50
52{
69template <typename _T>
71{
72protected:
73 // \cond IGNORE
74 // internally, we use a priority queue for nearest neighbors, paired
75 // with their distance to the query point
76 using DataDist = std::pair<const _T*, double>;
77 struct DataDistCompare
78 {
79 bool operator()(const DataDist& d0, const DataDist& d1)
80 {
81 return d0.second < d1.second;
82 }
83 };
84 using NearQueue = std::priority_queue<DataDist, std::vector<DataDist>, DataDistCompare>;
85
86 // another internal data structure is a priority queue of nodes to
87 // check next for possible nearest neighbors
88 class Node;
89 using NodeDist = std::pair<Node*, double>;
90 struct NodeDistCompare
91 {
92 bool operator()(const NodeDist& n0, const NodeDist& n1) const
93 {
94 return (n0.second - n0.first->maxRadius_) > (n1.second - n1.first->maxRadius_);
95 }
96 };
97 using NodeQueue = std::priority_queue<NodeDist, std::vector<NodeDist>, NodeDistCompare>;
98 // \endcond
99
100public:
101 NearestNeighborsGNAT(unsigned int degree = 8, unsigned int minDegree = 4, unsigned int maxDegree = 12,
102 unsigned int maxNumPtsPerLeaf = 50, unsigned int removedCacheSize = 500,
103 bool rebalancing = false)
104 : NearestNeighbors<_T>()
105 , degree_(degree)
106 , minDegree_(std::min(degree, minDegree))
107 , maxDegree_(std::max(maxDegree, degree))
108 , maxNumPtsPerLeaf_(maxNumPtsPerLeaf)
109 , rebuildSize_(rebalancing ? maxNumPtsPerLeaf * degree : std::numeric_limits<std::size_t>::max())
110 , removedCacheSize_(removedCacheSize)
111 {
112 }
113
115 {
116 if (tree_)
117 delete tree_;
118 }
119 // \brief Set the distance function to use
120 void setDistanceFunction(const typename NearestNeighbors<_T>::DistanceFunction& distFun) override
121 {
123 pivotSelector_.setDistanceFunction(distFun);
124 if (tree_)
126 }
127
128 void clear() override
129 {
130 if (tree_)
131 {
132 delete tree_;
133 tree_ = nullptr;
134 }
135 size_ = 0;
136 removed_.clear();
137 if (rebuildSize_ != std::numeric_limits<std::size_t>::max())
139 }
140
141 bool reportsSortedResults() const override
142 {
143 return true;
144 }
145
146 void add(const _T& data) override
147 {
148 if (tree_)
149 {
150 if (isRemoved(data))
152 tree_->add(*this, data);
153 }
154 else
155 {
156 tree_ = new Node(degree_, maxNumPtsPerLeaf_, data);
157 size_ = 1;
158 }
159 }
160 void add(const std::vector<_T>& data) override
161 {
162 if (tree_)
163 {
165 }
166 else if (!data.empty())
167 {
168 tree_ = new Node(degree_, maxNumPtsPerLeaf_, data[0]);
169 for (unsigned int i = 1; i < data.size(); ++i)
170 tree_->data_.push_back(data[i]);
171 size_ += data.size();
172 if (tree_->needToSplit(*this))
173 tree_->split(*this);
174 }
175 }
176 // \brief Rebuild the internal data structure.
178 {
179 std::vector<_T> lst;
180 list(lst);
181 clear();
182 add(lst);
183 }
184 // \brief Remove data from the tree.
185 // The element won't actually be removed immediately, but just marked
186 // for removal in the removed_ cache. When the cache is full, the tree
187 // will be rebuilt and the elements marked for removal will actually
188 // be removed.
189 bool remove(const _T& data) override
190 {
191 if (size_ == 0u)
192 return false;
193 NearQueue nbh_queue;
194 // find data in tree
195 bool is_pivot = nearestKInternal(data, 1, nbh_queue);
196 const _T* d = nbh_queue.top().first;
197 if (*d != data)
198 return false;
199 removed_.insert(d);
200 size_--;
201 // if we removed a pivot or if the capacity of removed elements
202 // has been reached, we rebuild the entire GNAT
203 if (is_pivot || removed_.size() >= removedCacheSize_)
205 return true;
206 }
207
208 _T nearest(const _T& data) const override
209 {
210 if (size_)
211 {
212 NearQueue nbh_queue;
213 nearestKInternal(data, 1, nbh_queue);
214 if (!nbh_queue.empty())
215 return *nbh_queue.top().first;
216 }
217 throw moveit::Exception("No elements found in nearest neighbors data structure");
218 }
219
220 // Return the k nearest neighbors in sorted order
221 void nearestK(const _T& data, std::size_t k, std::vector<_T>& nbh) const override
222 {
223 nbh.clear();
224 if (k == 0)
225 return;
226 if (size_)
227 {
228 NearQueue nbh_queue;
229 nearestKInternal(data, k, nbh_queue);
230 postprocessNearest(nbh_queue, nbh);
231 }
232 }
233
234 // Return the nearest neighbors within distance \c radius in sorted order
235 void nearestR(const _T& data, double radius, std::vector<_T>& nbh) const override
236 {
237 nbh.clear();
238 if (size_)
239 {
240 NearQueue nbh_queue;
241 nearestRInternal(data, radius, nbh_queue);
242 postprocessNearest(nbh_queue, nbh);
243 }
244 }
245
246 std::size_t size() const override
247 {
248 return size_;
249 }
250
251 void list(std::vector<_T>& data) const override
252 {
253 data.clear();
254 data.reserve(size());
255 if (tree_)
256 tree_->list(*this, data);
257 }
258
259 // \brief Print a GNAT structure (mostly useful for debugging purposes).
260 friend std::ostream& operator<<(std::ostream& out, const NearestNeighborsGNAT<_T>& gnat)
261 {
262 if (gnat.tree_)
263 {
264 out << *gnat.tree_;
265 if (!gnat.removed_.empty())
266 {
267 out << "Elements marked for removal:\n";
268 for (typename std::unordered_set<const _T*>::const_iterator it = gnat.removed_.begin();
269 it != gnat.removed_.end(); ++it)
270 out << **it << '\t';
271 out << '\n';
272 }
273 }
274 return out;
275 }
276
277 // for debugging purposes
279 {
280 std::vector<_T> lst;
281 std::unordered_set<const _T*> tmp;
282 // get all elements, including those marked for removal
283 removed_.swap(tmp);
284 list(lst);
285 // check if every element marked for removal is also in the tree
286 for (typename std::unordered_set<const _T*>::iterator it = tmp.begin(); it != tmp.end(); ++it)
287 {
288 unsigned int i;
289 for (i = 0; i < lst.size(); ++i)
290 {
291 if (lst[i] == **it)
292 break;
293 }
294 if (i == lst.size())
295 {
296 // an element marked for removal is not actually in the tree
297 std::cout << "***** FAIL!! ******\n" << *this << '\n';
298 for (unsigned int j = 0; j < lst.size(); ++j)
299 std::cout << lst[j] << '\t';
300 std::cout << '\n';
301 }
302 assert(i != lst.size());
303 }
304 // restore
305 removed_.swap(tmp);
306 // get elements in the tree with elements marked for removal purged from the list
307 list(lst);
308 if (lst.size() != size_)
309 std::cout << "#########################################\n" << *this << '\n';
310 assert(lst.size() == size_);
311 }
312
313protected:
315
316 // Return true iff data has been marked for removal.
317 bool isRemoved(const _T& data) const
318 {
319 return !removed_.empty() && removed_.find(&data) != removed_.end();
320 }
321
322 // \brief Return in nbhQueue the k nearest neighbors of data.
323 // For k=1, return true if the nearest neighbor is a pivot.
324 // (which is important during removal; removing pivots is a
325 // special case).
326 bool nearestKInternal(const _T& data, std::size_t k, NearQueue& nbhQueue) const
327 {
328 bool is_pivot;
329 double dist;
330 NodeDist node_dist;
331 NodeQueue node_queue;
332
334 is_pivot = tree_->insertNeighborK(nbhQueue, k, tree_->pivot_, data, dist);
335 tree_->nearestK(*this, data, k, nbhQueue, node_queue, is_pivot);
336 while (!node_queue.empty())
337 {
338 dist = nbhQueue.top().second; // note the difference with nearestRInternal
339 node_dist = node_queue.top();
340 node_queue.pop();
341 if (nbhQueue.size() == k && (node_dist.second > node_dist.first->maxRadius_ + dist ||
342 node_dist.second < node_dist.first->minRadius_ - dist))
343 continue;
344 node_dist.first->nearestK(*this, data, k, nbhQueue, node_queue, is_pivot);
345 }
346 return is_pivot;
347 }
348 // \brief Return in nbhQueue the elements that are within distance radius of data.
349 void nearestRInternal(const _T& data, double radius, NearQueue& nbhQueue) const
350 {
351 double dist = radius; // note the difference with nearestKInternal
352 NodeQueue node_queue;
353 NodeDist node_dist;
354
356 tree_->nearestR(*this, data, radius, nbhQueue, node_queue);
357 while (!node_queue.empty())
358 {
359 node_dist = node_queue.top();
360 node_queue.pop();
361 if (node_dist.second > node_dist.first->maxRadius_ + dist || node_dist.second < node_dist.first->minRadius_ - dist)
362 continue;
363 node_dist.first->nearestR(*this, data, radius, nbhQueue, node_queue);
364 }
365 }
366 // \brief Convert the internal data structure used for storing neighbors
367 // to the vector that NearestNeighbor API requires.
368 void postprocessNearest(NearQueue& nbhQueue, std::vector<_T>& nbh) const
369 {
370 typename std::vector<_T>::reverse_iterator it;
371 nbh.resize(nbhQueue.size());
372 for (it = nbh.rbegin(); it != nbh.rend(); it++, nbhQueue.pop())
373 *it = *nbhQueue.top().first;
374 }
375
376 // The class used internally to define the GNAT.
377 class Node
378 {
379 public:
380 // \brief Construct a node of given degree with at most
381 // \e capacity data elements and with given pivot.
382 Node(int degree, int capacity, _T pivot)
383 : degree_(degree)
384 , pivot_(std::move(pivot))
385 , minRadius_(std::numeric_limits<double>::infinity())
387 , minRange_(degree, minRadius_)
388 , maxRange_(degree, maxRadius_)
389 {
390 // The "+1" is needed because we add an element before we check whether to split
391 data_.reserve(capacity + 1);
392 }
393
395 {
396 for (unsigned int i = 0; i < children_.size(); ++i)
397 delete children_[i];
398 }
399
400 // \brief Update minRadius_ and maxRadius_, given that an element
401 // was added with distance dist to the pivot.
402 void updateRadius(double dist)
403 {
404 if (minRadius_ > dist)
405 minRadius_ = dist;
406#ifndef GNAT_SAMPLER
407 if (maxRadius_ < dist)
408 maxRadius_ = dist;
409#else
410 if (maxRadius_ < dist)
411 {
412 maxRadius_ = dist;
413 activity_ = 0;
414 }
415 else
416 activity_ = std::max(-32, activity_ - 1);
417#endif
418 }
419 // \brief Update minRange_[i] and maxRange_[i], given that an
420 // element was added to the i-th child of the parent that has
421 // distance dist to this Node's pivot.
422 void updateRange(unsigned int i, double dist)
423 {
424 if (minRange_[i] > dist)
425 minRange_[i] = dist;
426 if (maxRange_[i] < dist)
427 maxRange_[i] = dist;
428 }
429 // Add an element to the tree rooted at this node.
430 void add(GNAT& gnat, const _T& data)
431 {
432 if (children_.empty())
433 {
434 data_.push_back(data);
435 gnat.size_++;
436 if (needToSplit(gnat))
437 {
438 if (!gnat.removed_.empty())
439 {
441 }
442 else if (gnat.size_ >= gnat.rebuildSize_)
443 {
444 gnat.rebuildSize_ <<= 1;
446 }
447 else
448 split(gnat);
449 }
450 }
451 else
452 {
453 std::vector<double> dist(children_.size());
454 double min_dist = dist[0] = gnat.distFun_(data, children_[0]->pivot_);
455 int min_ind = 0;
456
457 for (unsigned int i = 1; i < children_.size(); ++i)
458 {
459 if ((dist[i] = gnat.distFun_(data, children_[i]->pivot_)) < min_dist)
460 {
461 min_dist = dist[i];
462 min_ind = i;
463 }
464 }
465 for (unsigned int i = 0; i < children_.size(); ++i)
466 children_[i]->updateRange(min_ind, dist[i]);
467 children_[min_ind]->updateRadius(min_dist);
468 children_[min_ind]->add(gnat, data);
469 }
470 }
471 // Return true iff the node needs to be split into child nodes.
472 bool needToSplit(const GNAT& gnat) const
473 {
474 unsigned int sz = data_.size();
475 return sz > gnat.maxNumPtsPerLeaf_ && sz > degree_;
476 }
477 // \brief The split operation finds pivot elements for the child
478 // nodes and moves each data element of this node to the appropriate
479 // child node.
480 void split(GNAT& gnat)
481 {
482 typename GreedyKCenters<_T>::Matrix dists(data_.size(), degree_);
483 std::vector<unsigned int> pivots;
484
485 children_.reserve(degree_);
486 gnat.pivotSelector_.kcenters(data_, degree_, pivots, dists);
487 for (unsigned int& pivot : pivots)
488 children_.push_back(new Node(degree_, gnat.maxNumPtsPerLeaf_, data_[pivot]));
489 degree_ = pivots.size(); // in case fewer than degree_ pivots were found
490 for (unsigned int j = 0; j < data_.size(); ++j)
491 {
492 unsigned int k = 0;
493 for (unsigned int i = 1; i < degree_; ++i)
494 {
495 if (dists(j, i) < dists(j, k))
496 k = i;
497 }
498 Node* child = children_[k];
499 if (j != pivots[k])
500 {
501 child->data_.push_back(data_[j]);
502 child->updateRadius(dists(j, k));
503 }
504 for (unsigned int i = 0; i < degree_; ++i)
505 children_[i]->updateRange(k, dists(j, i));
506 }
507
508 for (unsigned int i = 0; i < degree_; ++i)
509 {
510 // make sure degree lies between minDegree_ and maxDegree_
511 children_[i]->degree_ =
512 std::min(std::max(static_cast<unsigned int>(((degree_ * children_[i]->data_.size()) / data_.size())),
513 gnat.minDegree_),
514 gnat.maxDegree_);
515 // singleton
516 if (children_[i]->minRadius_ >= std::numeric_limits<double>::infinity())
517 children_[i]->minRadius_ = children_[i]->maxRadius_ = 0.;
518 }
519 // this does more than clear(); it also sets capacity to 0 and frees the memory
520 std::vector<_T> tmp;
521 data_.swap(tmp);
522 // check if new leaves need to be split
523 for (unsigned int i = 0; i < degree_; ++i)
524 {
525 if (children_[i]->needToSplit(gnat))
526 children_[i]->split(gnat);
527 }
528 }
529
530 // Insert data in nbh if it is a near neighbor. Return true iff data was added to nbh.
531 bool insertNeighborK(NearQueue& nbh, std::size_t k, const _T& data, const _T& key, double dist) const
532 {
533 if (nbh.size() < k)
534 {
535 nbh.push(std::make_pair(&data, dist));
536 return true;
537 }
538 if (dist < nbh.top().second || (dist < std::numeric_limits<double>::epsilon() && data == key))
539 {
540 nbh.pop();
541 nbh.push(std::make_pair(&data, dist));
542 return true;
543 }
544 return false;
545 }
546
547 // \brief Compute the k nearest neighbors of data in the tree.
548 // For k=1, isPivot is true if the nearest neighbor is a pivot
549 // (which is important during removal; removing pivots is a
550 // special case). The nodeQueue, which contains other Nodes
551 // that need to be checked for nearest neighbors, is updated.
552 void nearestK(const GNAT& gnat, const _T& data, std::size_t k, NearQueue& nbh, NodeQueue& nodeQueue,
553 bool& isPivot) const
554 {
555 for (unsigned int i = 0; i < data_.size(); ++i)
556 {
557 if (!gnat.isRemoved(data_[i]))
558 {
559 if (insertNeighborK(nbh, k, data_[i], data, gnat.distFun_(data, data_[i])))
560 isPivot = false;
561 }
562 }
563 if (!children_.empty())
564 {
565 double dist;
566 Node* child;
567 std::vector<double> dist_to_pivot(children_.size());
568 std::vector<int> permutation(children_.size());
569 for (unsigned int i = 0; i < permutation.size(); ++i)
570 permutation[i] = i;
571 std::shuffle(permutation.begin(), permutation.end(), rsl::rng());
572
573 for (unsigned int i = 0; i < children_.size(); ++i)
574 {
575 if (permutation[i] >= 0)
576 {
577 child = children_[permutation[i]];
578 dist_to_pivot[permutation[i]] = gnat.distFun_(data, child->pivot_);
579 if (insertNeighborK(nbh, k, child->pivot_, data, dist_to_pivot[permutation[i]]))
580 isPivot = true;
581 if (nbh.size() == k)
582 {
583 dist = nbh.top().second; // note difference with nearestR
584 for (unsigned int j = 0; j < children_.size(); ++j)
585 {
586 if (permutation[j] >= 0 && i != j &&
587 (dist_to_pivot[permutation[i]] - dist > child->maxRange_[permutation[j]] ||
588 dist_to_pivot[permutation[i]] + dist < child->minRange_[permutation[j]]))
589 permutation[j] = -1;
590 }
591 }
592 }
593 }
594
595 dist = nbh.top().second;
596 for (unsigned int i = 0; i < children_.size(); ++i)
597 {
598 if (permutation[i] >= 0)
599 {
600 child = children_[permutation[i]];
601 if (nbh.size() < k || (dist_to_pivot[permutation[i]] - dist <= child->maxRadius_ &&
602 dist_to_pivot[permutation[i]] + dist >= child->minRadius_))
603 nodeQueue.push(std::make_pair(child, dist_to_pivot[permutation[i]]));
604 }
605 }
606 }
607 }
608 // Insert data in nbh if it is a near neighbor.
609 void insertNeighborR(NearQueue& nbh, double r, const _T& data, double dist) const
610 {
611 if (dist <= r)
612 nbh.push(std::make_pair(&data, dist));
613 }
614 // \brief Return all elements that are within distance r in nbh.
615 // The nodeQueue, which contains other Nodes that need to
616 // be checked for nearest neighbors, is updated.
617 void nearestR(const GNAT& gnat, const _T& data, double r, NearQueue& nbh, NodeQueue& nodeQueue) const
618 {
619 double dist = r; // note difference with nearestK
620
621 for (unsigned int i = 0; i < data_.size(); ++i)
622 {
623 if (!gnat.isRemoved(data_[i]))
624 insertNeighborR(nbh, r, data_[i], gnat.distFun_(data, data_[i]));
625 }
626 if (!children_.empty())
627 {
628 Node* child;
629 std::vector<double> dist_to_pivot(children_.size());
630 std::vector<int> permutation(children_.size());
631 for (unsigned int i = 0; i < permutation.size(); ++i)
632 permutation[i] = i;
633 std::shuffle(permutation.begin(), permutation.end(), rsl::rng());
634
635 for (unsigned int i = 0; i < children_.size(); ++i)
636 {
637 if (permutation[i] >= 0)
638 {
639 child = children_[permutation[i]];
640 dist_to_pivot[i] = gnat.distFun_(data, child->pivot_);
641 insertNeighborR(nbh, r, child->pivot_, dist_to_pivot[i]);
642 for (unsigned int j = 0; j < children_.size(); ++j)
643 {
644 if (permutation[j] >= 0 && i != j &&
645 (dist_to_pivot[i] - dist > child->maxRange_[permutation[j]] ||
646 dist_to_pivot[i] + dist < child->minRange_[permutation[j]]))
647 permutation[j] = -1;
648 }
649 }
650 }
651
652 for (unsigned int i = 0; i < children_.size(); ++i)
653 {
654 if (permutation[i] >= 0)
655 {
656 child = children_[permutation[i]];
657 if (dist_to_pivot[i] - dist <= child->maxRadius_ && dist_to_pivot[i] + dist >= child->minRadius_)
658 nodeQueue.push(std::make_pair(child, dist_to_pivot[i]));
659 }
660 }
661 }
662 }
663
664 void list(const GNAT& gnat, std::vector<_T>& data) const
665 {
666 if (!gnat.isRemoved(pivot_))
667 data.push_back(pivot_);
668 for (unsigned int i = 0; i < data_.size(); ++i)
669 {
670 if (!gnat.isRemoved(data_[i]))
671 data.push_back(data_[i]);
672 }
673 for (unsigned int i = 0; i < children_.size(); ++i)
674 children_[i]->list(gnat, data);
675 }
676
677 friend std::ostream& operator<<(std::ostream& out, const Node& node)
678 {
679 out << "\ndegree:\t" << node.degree_;
680 out << "\nminRadius:\t" << node.minRadius_;
681 out << "\nmaxRadius:\t" << node.maxRadius_;
682 out << "\nminRange:\t";
683 for (unsigned int i = 0; i < node.minRange_.size(); ++i)
684 out << node.minRange_[i] << '\t';
685 out << "\nmaxRange: ";
686 for (unsigned int i = 0; i < node.maxRange_.size(); ++i)
687 out << node.maxRange_[i] << '\t';
688 out << "\npivot:\t" << node.pivot_;
689 out << "\ndata: ";
690 for (unsigned int i = 0; i < node.data_.size(); ++i)
691 out << node.data_[i] << '\t';
692 out << "\nthis:\t" << &node;
693 out << "\nchildren:\n";
694 for (unsigned int i = 0; i < node.children_.size(); ++i)
695 out << node.children_[i] << '\t';
696 out << '\n';
697 for (unsigned int i = 0; i < node.children_.size(); ++i)
698 out << *node.children_[i] << '\n';
699 return out;
700 }
701
702 // Number of child nodes
703 unsigned int degree_;
704 // Data element stored in this Node
705 const _T pivot_;
706 // Minimum distance between the pivot element and the elements stored in data_
708 // Maximum distance between the pivot element and the elements stored in data_
710 // \brief The i-th element in minRange_ is the minimum distance between the
711 // pivot and any data_ element in the i-th child node of this node's parent.
712 std::vector<double> minRange_;
713 // \brief The i-th element in maxRange_ is the maximum distance between the
714 // pivot and any data_ element in the i-th child node of this node's parent.
715 std::vector<double> maxRange_;
716 // \brief The data elements stored in this node (in addition to the pivot
717 // element). An internal node has no elements stored in data_.
718 std::vector<_T> data_;
719 // \brief The child nodes of this node. By definition, only internal nodes
720 // have child nodes.
721 std::vector<Node*> children_;
722 };
723
724 // \brief The data structure containing the elements stored in this structure.
725 Node* tree_{ nullptr };
726 // The desired degree of each node.
727 unsigned int degree_;
728 // \brief After splitting a Node, each child Node has degree equal to
729 // the default degree times the fraction of data elements from the
730 // original node that got assigned to that child Node. However, its
731 // degree can be no less than minDegree_.
732 unsigned int minDegree_;
733 // \brief After splitting a Node, each child Node has degree equal to
734 // the default degree times the fraction of data elements from the
735 // original node that got assigned to that child Node. However, its
736 // degree can be no larger than maxDegree_.
737 unsigned int maxDegree_;
738 // \brief Maximum number of elements allowed to be stored in a Node before
739 // it needs to be split into several nodes.
740 unsigned int maxNumPtsPerLeaf_;
741 // \brief Number of elements stored in the tree.
742 std::size_t size_{ 0 };
743 // \brief If size_ exceeds rebuildSize_, the tree will be rebuilt (and
744 // automatically rebalanced), and rebuildSize_ will be doubled.
745 std::size_t rebuildSize_;
746 // \brief Maximum number of removed elements that can be stored in the
747 // removed_ cache. If the cache is full, the tree will be rebuilt with
748 // the elements in removed_ actually removed from the tree.
749 std::size_t removedCacheSize_;
750 // \brief The data structure used to split data into subtrees.
752 // \brief Cache of removed elements.
753 std::unordered_set<const _T*> removed_;
754};
755} // namespace cached_ik_kinematics_plugin
An instance of this class can be used to greedily select a given number of representatives from a set...
Eigen::MatrixXd Matrix
A matrix type for storing distances between points and centers.
bool insertNeighborK(NearQueue &nbh, std::size_t k, const _T &data, const _T &key, double dist) const
void nearestR(const GNAT &gnat, const _T &data, double r, NearQueue &nbh, NodeQueue &nodeQueue) const
void list(const GNAT &gnat, std::vector< _T > &data) const
void insertNeighborR(NearQueue &nbh, double r, const _T &data, double dist) const
friend std::ostream & operator<<(std::ostream &out, const Node &node)
void nearestK(const GNAT &gnat, const _T &data, std::size_t k, NearQueue &nbh, NodeQueue &nodeQueue, bool &isPivot) const
Geometric Near-neighbor Access Tree (GNAT), a data structure for nearest neighbor search.
friend std::ostream & operator<<(std::ostream &out, const NearestNeighborsGNAT< _T > &gnat)
std::size_t size() const override
Get the number of elements in the datastructure.
void list(std::vector< _T > &data) const override
Get all the elements in the datastructure.
void setDistanceFunction(const typename NearestNeighbors< _T >::DistanceFunction &distFun) override
bool remove(const _T &data) override
Remove an element from the datastructure.
void nearestR(const _T &data, double radius, std::vector< _T > &nbh) const override
Get the nearest neighbors of a point, within a specified radius.
void add(const _T &data) override
Add an element to the datastructure.
void clear() override
Clear the datastructure.
void postprocessNearest(NearQueue &nbhQueue, std::vector< _T > &nbh) const
void nearestRInternal(const _T &data, double radius, NearQueue &nbhQueue) const
NearestNeighborsGNAT(unsigned int degree=8, unsigned int minDegree=4, unsigned int maxDegree=12, unsigned int maxNumPtsPerLeaf=50, unsigned int removedCacheSize=500, bool rebalancing=false)
void add(const std::vector< _T > &data) override
Add a vector of points.
bool reportsSortedResults() const override
Return true if the solutions reported by this data structure are sorted, when calling nearestK / near...
bool nearestKInternal(const _T &data, std::size_t k, NearQueue &nbhQueue) const
void nearestK(const _T &data, std::size_t k, std::vector< _T > &nbh) const override
Get the k-nearest neighbors of a point.
_T nearest(const _T &data) const override
Get the nearest neighbor of a point.
Abstract representation of a container that can perform nearest neighbors queries.
virtual void add(const _T &data)=0
Add an element to the datastructure.
std::function< double(const _T &, const _T &)> DistanceFunction
The definition of a distance function.
virtual void setDistanceFunction(const DistanceFunction &distFun)
Set the distance function to use.
DistanceFunction distFun_
The used distance function.
This may be thrown if unrecoverable errors occur.